Couvre l'impact des transformateurs dans la vision par ordinateur, en discutant de leur architecture, de leurs applications et de leurs progrès dans diverses tâches.
Explore l'évolution des mécanismes d'attention vers les transformateurs dans les NLP modernes, en soulignant l'importance de l'auto-attention et de l'attention croisée.
Explore le décodage à partir de modèles neuronaux dans le NLP moderne, couvrant les modèles encodeurs-décodeurs, les algorithmes de décodage, les problèmes avec le décodage argmax, et l'impact de la taille du faisceau.
Explore les techniques de compression des modèles dans les NLP, en discutant de la taille, de la quantification, de la factorisation du poids, de la distillation des connaissances et des mécanismes d'attention.
Explore les modèles de séquence à séquence avec BART et T5, en discutant de l'apprentissage du transfert, du réglage fin, des architectures de modèles, des tâches, de la comparaison des performances, des résultats de synthèse et des références.
Couvre les modèles de séquence à séquence, leur architecture, leurs applications et le rôle des mécanismes d'attention dans l'amélioration des performances.
Explore la prédiction des réactions chimiques à l'aide de modèles générateurs et de transformateurs moléculaires, soulignant l'importance du traitement du langage moléculaire et de la stéréochimie.
Déplacez-vous dans l'architecture Transformer, l'auto-attention et les stratégies de formation pour la traduction automatique et la reconnaissance d'image.