Explore la recherche de documents, la classification, l'analyse des sentiments, les matrices TF-IDF, les méthodes de voisinage les plus proches, la factorisation matricielle, la régularisation, LDA, les vecteurs de mots contextualisés et BERT.
Couvre les concepts de base de la récupération d'informations textuelles et la façon dont les documents sont indexés et récupérés en fonction des requêtes des utilisateurs.
Couvre la récupération de documents, la classification, l'analyse des sentiments et la détection de sujets à l'aide de matrices TF-IDF et de vecteurs de mots contextualisés tels que BERT.
Couvre les fondamentaux et les algorithmes du classement basé sur les liens, y compris l'indexation de texte d'ancrage, PageRank, HITS, et les implémentations pratiques.
Couvre les modèles probabilistes d'extraction, les mesures d'évaluation, la probabilité de la requête, la rétroaction sur la pertinence de l'utilisateur et l'expansion de la requête.
Couvre la recherche de documents, la classification, l'analyse des sentiments et la détection de sujets à l'aide de matrices TF-IDF et de vecteurs de mots contextualisés.