Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Offre une introduction complète à la science des données, couvrant Python, Numpy, Pandas, Matplotlib et Scikit-learn, en mettant l'accent sur les exercices pratiques et le travail collaboratif.
Couvre les fondamentaux du traitement des flux de données, y compris les informations en temps réel, les applications de l'industrie, et les exercices pratiques sur Kafka et Spark Streaming.
Couvre les projets d'histoire numérique, les relations sociales dans la recherche, les défis de prétraitement des données et les outils d'analyse de réseau.
Explore les défis du Big Data, l'informatique distribuée avec Spark, les RDD, la configuration matérielle requise, MapReduce, les transformations et Spark DataFrames.
Couvre l'introduction et les défis des entrepôts de données, y compris l'intégration des données, la gestion des métadonnées et l'optimisation des performances des requêtes.
Souligne les avantages de la tenue de notes pour l'efficacité, la réduction du stress et l'intégrité de la recherche, en fournissant des méthodes pour une pratique efficace.