Explore les techniques de Monte Carlo pour l'échantillonnage et la simulation, couvrant l'intégration, l'échantillonnage d'importance, l'ergonomie, l'équilibrage et l'acceptation de Metropolis.
Couvre la théorie du traitement du signal numérique, y compris l'échantillonnage, les méthodes de transformation, la numérisation et les contrôleurs PID.
Introduit des fondamentaux d'apprentissage profond, couvrant les représentations de données, les réseaux neuronaux et les réseaux neuronaux convolutionnels.