Transformers en vision : applications et architectures
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'apprentissage profond pour la PNL, en couvrant les insertions de mots, les représentations contextuelles, les techniques d'apprentissage et les défis tels que les gradients de disparition et les considérations éthiques.
Discute de la navigation par quadritor en utilisant l'apprentissage de renforcement profond et le contrôle de bas niveau, en mettant l'accent sur l'intelligence visuelle et la robustesse du modèle de regard.
Couvre les bases de la génération de texte et les défis de l'évaluation du texte généré à l'aide de mesures de chevauchement de contenu, de mesures fondées sur des modèles et d'évaluations humaines.
Explore les représentations neuro-symboliques pour comprendre les connaissances et le raisonnement communs, en mettant l'accent sur les défis et les limites de l'apprentissage profond dans le traitement du langage naturel.
Explore l'apprentissage autosupervisé pour les véhicules autonomes, en dérivant des étiquettes de données elles-mêmes et en discutant de ses applications et de ses défis.
Explore l'évolution des mécanismes d'attention vers les transformateurs dans les NLP modernes, en soulignant l'importance de l'auto-attention et de l'attention croisée.