Discute des techniques de réduction de la variance dans la simulation stochastique, en se concentrant sur les stratégies d'allocation et les algorithmes de génération de répliques.
Couvre les méthodes de recherche de ligne de gradient et les techniques d'optimisation en mettant l'accent sur les conditions Wolfe et la définition positive.
Couvre les mécanismes d'attention subquadratiques et les modèles d'espace d'état, en se concentrant sur leurs fondements théoriques et leurs implémentations pratiques dans l'apprentissage automatique.