Modèles de génération profonde: Codeurs automatiques et GANs
Séances de cours associées (105)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les techniques de réduction de dimensionnalité non linéaire à l'aide d'autoencodeurs, d'autoencodeurs profonds et d'autoencodeurs convolutifs pour diverses applications.
Couvre les autoencodeurs variationnels, une approche probabiliste des autoencodeurs pour la génération de données et la représentation de fonctionnalités, avec des applications dans le traitement du langage naturel.
Déplacez-vous dans des modèles hydrodynamiques uniformément précis pour les équations cinétiques utilisant l'apprentissage par machine, couvrant l'équation de Boltzmann, les méthodes de moment et les résultats numériques.
Couvre les bases de la génération de texte et les défis de l'évaluation du texte généré à l'aide de mesures de chevauchement de contenu, de mesures fondées sur des modèles et d'évaluations humaines.
Déplacez-vous dans des modèles générateurs basés sur les scores, explorant les distributions naturelles d'apprentissage et l'impact de l'architecture de réseau neuronal sur la robustesse.
Explore les bases de l'apprentissage automatique, les conditions conflictuelles, les répercussions sur la vie privée et les défis de déploiement, mettant en évidence les biais et les menaces contradictoires.
Explore la génération de langage naturel, en mettant l'accent sur les systèmes de construction qui produisent un texte cohérent pour la consommation humaine à l'aide de diverses méthodes de décodage et de mesures d'évaluation.
Se penche sur les défis de l'apprentissage supervisé en science citoyenne, en mettant l'accent sur la reconnaissance des espèces végétales et l'agrégation des étiquettes.