Introduit les bases de l'algèbre linéaire, du calcul et de l'optimisation dans les espaces euclidien, en mettant l'accent sur la puissance de l'optimisation en tant qu'outil de modélisation.
Explore la convexité géodésique et son extension à l'optimisation sur les collecteurs, soulignant la préservation du fait clé que les minima locaux impliquent des minima globaux.
Explore la somme des polynômes carrés et la programmation semi-définie dans l'optimisation polynomiale, permettant l'approximation des polynômes non convexes avec SDP convexe.
Présente la conception des expériences, en mettant l'accent sur l'efficacité et les interactions en R & D à travers le contexte historique et des exemples pratiques.
Explore la définition de solutions de conception, l'optimisation multidisciplinaire et les défis liés à l'optimisation de la conception des systèmes, y compris les racines et la motivation derrière l'optimisation de la conception multidisciplinaire.
Explore les répliques, ANOVA et l'élimination des facteurs dans les conceptions factorielles complètes à l'aide des tables ANOM et des équations de modèle.