Construire un modèle de données à l'appui d'un cas d'utilisation scientifique
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des concepts de modélisation de données, l'utilisation de SQL et des applications de bibliothèque Pandas pour un traitement efficace des données.
Couvre l'analyse des données sur la pollution atmosphérique, en se concentrant sur les bases de R, en visualisant des séries chronologiques et en créant des résumés des concentrations de polluants.
Explore la combinaison de données au repos avec des données en mouvement, en mettant l'accent sur les complexités de l'architecture Lambda et l'évaluation de la qualité des flux et des lots.
Couvre les cadres de données Spark, les collections distribuées de données organisées en colonnes nommées, et les avantages de les utiliser sur les DDR.
Explore les défis et les innovations dans les systèmes de base de données, en mettant l'accent sur la nécessité d'une gestion efficace des données et de s'adapter aux avancées matérielles modernes.
Introduit les principes fondamentaux du traitement des données, soulignant l'importance des Pandas et de la modélisation des données pour une analyse efficace.
Explore le contrôle du comportement chez les animaux et les robots, couvrant les perspectives historiques, l'activation des neurones, le modèle de Drosophila, les techniques avancées et l'organisation de mini-projets.