Examine les éléments fondamentaux de la gestion des données, y compris les modèles, les sources et les querelles, en soulignant l'importance de comprendre et de résoudre les problèmes de données.
Explore l'évaluation environnementale systémique, l'analyse nationale des flux de matériaux et le développement d'un tableau de bord du métabolisme urbain pour Zurich à l'aide de données ouvertes.
Discute de la synthèse des enquêtes, de l'évaluation des besoins, de la définition des programmes et du soutien social dans la restructuration des quartiers africains.
Couvre les meilleures pratiques et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture, les défis et les technologies comme Hadoop et Hive.
Introduit des outils collaboratifs de science des données comme Git et Docker, en mettant l'accent sur le travail d'équipe et les exercices pratiques pour un apprentissage efficace.