Couvre le problème de Cauchy dans les équations différentielles, en se concentrant sur les conditions initiales et leur impact sur lunicité de la solution.
Couvre le caractère unique des solutions dans les équations différentielles, en se concentrant sur le théorème de Cauchy-Lipschitz et ses implications pour les solutions locales et globales.
Fournit un aperçu des équations différentielles, de leurs propriétés et des méthodes pour trouver des solutions à travers divers exemples et représentations graphiques.
Couvre les principes fondamentaux des équations différentielles, leurs propriétés et les méthodes pour trouver des solutions à travers divers exemples.
Discute de l'analyse complexe, en se concentrant sur le théorème des résidus et les transformées de Fourier, avec des exercices pratiques et des applications dans la résolution des équations différentielles.
Discute de la série Laurent et du théorème des résidus dans l'analyse complexe, en se concentrant sur les singularités et leurs applications dans l'évaluation des intégrales complexes.
Discute de l'analyse complexe, en se concentrant sur les transformées de Laplace, la série de Fourier et les solutions et l'unicité de l'équation de la chaleur.