Explore les modèles thématiques, les modèles de mélange gaussien, la répartition des dirichlets latents et l'inférence variationnelle dans la compréhension des structures latentes à l'intérieur des données.
Couvre les modèles générateurs en mettant l'accent sur l'auto-attention et les transformateurs, en discutant des méthodes d'échantillonnage et des moyens empiriques.
Présente l'attribution des dirichlets latents pour la modélisation des sujets dans les documents, en discutant de son processus, de ses demandes et de ses limites.
Couvre des modèles thématiques, en se concentrant sur l'allocation de Dirichlet latente, le regroupement, les MGM, la distribution de Dirichlet, l'apprentissage LDA et les applications en humanités numériques.
Introduit des concepts fondamentaux d'apprentissage automatique, couvrant la régression, la classification, la réduction de dimensionnalité et des modèles générateurs profonds.