Choix discret et apprentissage automatique: deux méthodologies complémentaires
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les bases de l'apprentissage automatique, les défis en matière de déploiement, les attaques contradictoires et les préoccupations en matière de protection de la vie privée.
Couvre l'interprétation probabiliste de la régression logistique, la régression multinomiale, le KNN, les hyperparamètres et la malédiction de la dimensionnalité.
Introduit l'apprentissage supervisé, couvrant la classification, la régression, l'optimisation des modèles, le surajustement, et les méthodes du noyau.
Introduit des concepts clés d'apprentissage automatique, tels que l'apprentissage supervisé, la régression par rapport à la classification et l'algorithme K-Nearest Neighbors.
Explore la sélection, l'évaluation et la généralisation des modèles dans l'apprentissage automatique, en mettant l'accent sur l'estimation impartiale des performances et les risques de surapprentissage.
Explore le picking automatisé des barres de renforcement dans les données radar pénétrantes au sol à l'aide de techniques d'apprentissage automatique et de traitement du signal.
Explore l'évaluation des modèles avec K-Nearest Neighbor, couvrant la sélection optimale de k, les mesures de similarité et les mesures de performance pour les modèles de classification.