Agents intelligents : caractéristiques et applications
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Compare l'apprentissage par renforcement basé sur un modèle et sans modèle, en soulignant les avantages du premier pour s'adapter aux changements de récompense et planifier les actions futures.
Explore l'IA socialement consciente pour la mobilité des derniers milles, se concentrant sur la compréhension des étiquettes sociales, l'anticipation des comportements et la prévision des mouvements de foule.
Couvre la planification avec des adversaires, des algorithmes de recherche heuristique et des stratégies pour les jeux avec le hasard, en soulignant l'importance des agents délibératifs.
Examine la façon dont l'IA/ML façonne le futur lieu de travail, en mettant l'accent sur les systèmes et les processus d'entreprise, et discute de l'état actuel de l'adoption de l'IA/ML dans les entreprises.
Explore les défis de l'apprentissage profond pour les véhicules autonomes, en mettant l'accent sur la modélisation du comportement social et la prévision de trajectoire réalisable.
Explore les défis et les distinctions entre l'autonomie humaine et artificielle, en abordant les implications éthiques et les conditions requises pour une véritable autonomie.
Explore les principes fondamentaux de la recherche scientifique, de l'impact des ordinateurs, des algorithmes numériques et de l'apprentissage profond dans la résolution de problèmes de haute dimension.
Le professeur David Bresch explore les origines et les applications de la modélisation des catastrophes naturelles, en mettant l'accent sur les tempêtes et leur impact sur l'atténuation des risques et les processus décisionnels.