Explore les algorithmes de classification génératifs et discriminatifs, en mettant l'accent sur leurs applications et leurs différences dans les tâches d'apprentissage automatique.
Couvre les techniques d'apprentissage supervisées et non supervisées dans l'apprentissage automatique, en mettant en évidence leurs applications dans la finance et l'analyse environnementale.
Explore l'apprentissage supervisé en économétrie financière, en mettant l'accent sur les algorithmes de classification comme Naive Bayes et la régression logistique.
Couvre les bases de l'apprentissage automatique, y compris la reconnaissance des chiffres manuscrits, la classification supervisée, les limites de décision et l'ajustement des courbes polynômes.
Couvre les bases de l'apprentissage automatique pour les physiciens et les chimistes, en mettant l'accent sur la classification des images et l'étiquetage des ensembles de données.
Couvre les mécanismes d'attention subquadratiques et les modèles d'espace d'état, en se concentrant sur leurs fondements théoriques et leurs implémentations pratiques dans l'apprentissage automatique.
Résume les cartes de Kohonen, qui couvrent l'initialisation, l'échantillonnage, l'appariement des similarités, des exemples et des applications dans l'apprentissage automatique et la classification des données.
Explore les aspects pratiques de la résolution des jeux de parité, y compris les stratégies gagnantes, les algorithmes, la complexité, le déterminisme et les approches heuristiques.
Présente les projets de l'EPFL Digital Humanities Master étudiants, couvrant l'apprentissage automatique, les approches interdisciplinaires et la poésie générée par ordinateur.
Couvre le clustering, la classification et le support des principes, des applications et de l'optimisation des machines vectorielles, y compris la classification non linéaire et les effets du noyau gaussien.