Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'analyse de régression pour les données de désassemblage à l'aide de la modélisation de régression linéaire, des transformations, des interprétations des coefficients et des modèles linéaires généralisés.
Couvre la régression linéaire et logistique pour les tâches de régression et de classification, en mettant l'accent sur les fonctions de perte et la formation de modèle.
Examine la régression probabiliste linéaire, couvrant les probabilités articulaires et conditionnelles, la régression des crêtes et l'atténuation excessive.
Introduit des modèles linéaires dans l'apprentissage automatique, couvrant les bases, les modèles paramétriques, la régression multi-sorties et les mesures d'évaluation.
Couvre la décomposition des erreurs, la régression polynomiale et les voisins K les plus proches pour la modélisation flexible et les prédictions non linéaires.