Couvre l'utilisation de transformateurs en robotique, en se concentrant sur la perception incarnée et les applications innovantes dans la locomotion humanoïde et l'apprentissage du renforcement.
Explore les défis et les opportunités dans la perception robotique basée sur la vision, couvrant des sujets tels que SLAM, la reconnaissance des lieux, les caméras d'événements et l'intelligence visuelle collaborative.
Explore les défis de l'apprentissage profond pour les véhicules autonomes, en mettant l'accent sur la modélisation du comportement social et la prévision de trajectoire réalisable.
Explore la prévision des trajectoires dans les véhicules autonomes, en mettant l'accent sur les modèles d'apprentissage profond pour prédire les trajectoires humaines dans les scénarios de transport socialement conscients.
Fournit une vue d'ensemble de l'apprentissage par renforcement, en se concentrant sur le gradient de politique et les méthodes critiques des acteurs pour les réseaux de neurones artificiels profonds.
Couvre les concepts fondamentaux de l'apprentissage profond et de l'architecture Transformer, en se concentrant sur les réseaux neuronaux, les mécanismes d'attention et leurs applications dans les tâches de modélisation de séquence.
Explore l'apprentissage profond pour les véhicules autonomes, couvrant la perception, l'action et les prévisions sociales dans le contexte des technologies de capteurs et des considérations éthiques.
Explore l'optimisation des réseaux neuronaux, y compris la rétropropagation, la normalisation des lots, l'initialisation du poids et les stratégies de recherche d'hyperparamètres.