Explore les propriétés de mélange des systèmes de conservation de mesures infinies, en mettant l'accent sur les suspensions, les transformations de Govers et le gaz Lorentz.
Couvre la détermination des espaces vectoriels, le calcul des noyaux et des images, la définition des bases et la discussion des sous-espaces et des espaces vectoriels.
Explore l'analyse numérique des équations non linéaires, en mettant l'accent sur les critères de convergence et les méthodes comme la bisection et l'itération à point fixe.
Couvre la convergence des méthodes de points fixes pour les équations non linéaires, y compris les théorèmes de convergence globale et locale et lordre de convergence.
Explore l'équivalence entre les différentes propriétés des transformations linéaires représentées par des matrices et diverses opérations matricielles.