Introduit le traitement du langage naturel, qui couvre le prétraitement du texte, l'analyse des sentiments et l'analyse des sujets, en mettant l'accent sur l'établissement d'un indice de risque pour le changement climatique.
Couvre les bases de la récupération d'informations à l'aide de modèles d'espace vectoriel et d'exercices pratiques sur la rétroaction de pertinence et la numérisation de la liste de publication.
Explore le modèle Vector Space, le sac de mots, tf-idf, cosine similarité, Okapi BM25, et la précision et le rappel dans la récupération d'information.
Introduit l'apprentissage non supervisé en cluster avec les moyennes K et la réduction de dimensionnalité à l'aide de PCA, ainsi que des exemples pratiques.
Explore l'indexation sémantique latente, la construction de vocabulaire, la création de matrices de documents, la transformation de requêtes et la récupération de documents en utilisant la similarité cosinus.
Couvre les défis et les opportunités de l'exploration de données, des questions pratiques, des composants d'algorithmes et des applications telles que l'analyse du panier d'achat.