Explore les valeurs propres, les vecteurs propres et les méthodes de résolution de systèmes linéaires en mettant l'accent sur les erreurs d'arrondi et les matrices de préconditionnement.
Couvre la vectorisation en Python en utilisant Numpy pour un calcul scientifique efficace, en soulignant les avantages d'éviter les boucles et de démontrer des applications pratiques.
Explore les méthodes itératives pour les équations linéaires, y compris les méthodes Jacobi et Gauss-Seidel, les critères de convergence et la méthode du gradient conjugué.