Couvre les méthodes d'optimisation, les garanties de convergence, les compromis et les techniques de réduction de la variance en optimisation numérique.
Couvre les bases de la programmation non linéaire et ses applications dans le contrôle optimal, en explorant des techniques, des exemples, des définitions d'optimalité et les conditions nécessaires.
Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité, les algorithmes et leurs applications pour assurer une convergence efficace vers les minima mondiaux.
Couvre les bases de l'optimisation, y compris les perspectives historiques, les formulations mathématiques et les applications pratiques dans les problèmes de prise de décision.
Explore la dualité lagrangienne dans l'optimisation convexe, transformant les problèmes en formulations min-max et discutant de l'importance des solutions doubles.
Explore la dualité lagrangienne dans l'optimisation convexe, en discutant de la dualité forte, des solutions duales et des applications pratiques dans les programmes de cônes de second ordre.