Présente les réseaux neuronaux convolutifs, en expliquant leur architecture, leur processus de formation et leurs applications dans les tâches de segmentation sémantique.
Plongez dans l'optimisation du deep learning, les défis, les variantes SGD, les points critiques, les réseaux surparamétrés et les méthodes adaptatives.
Introduit des fondamentaux d'apprentissage profond, couvrant les représentations de données, les réseaux neuronaux et les réseaux neuronaux convolutionnels.
Explore le modèle de perceptron multicouche, la formation, l'optimisation, le prétraitement des données, les fonctions d'activation, la rétropropagation et la régularisation.
Couvre les réseaux neuronaux convolutifs, les architectures standard, les techniques de formation et les exemples contradictoires en apprentissage profond.