Explore la cohérence et les propriétés asymptotiques de l’estimateur de vraisemblance maximale, y compris les défis à relever pour prouver sa cohérence et construire des estimateurs de type MLE.
Présente l'estimateur de Bayes, expliquant sa définition, son application dans des scénarios de coûts quadratiques et son importance dans le raisonnement probabiliste.
Explore la méthode des moments, le compromis biais-variance, la cohérence, le principe de plug-in et le principe de vraisemblance dans lestimation de point.