Explore la densité spectrale de puissance, le théorème de Wiener-Khintchine, l'ergonomie et l'estimation de corrélation dans les signaux aléatoires pour le traitement du signal.
Explore les signaux neuraux, le traitement EMG, les synergies musculaires et le contrôle de la prothèse à l'aide de techniques avancées de traitement des signaux.
Explore le traitement du signal neuronal pour les interfaces cerveau-ordinateur, y compris les techniques de décodage comme les filtres Kalman et le tri des pics.
Introduit un cours basé sur des projets en communication et en robotique, mettant l'accent sur des projets pratiques et un apprentissage indépendant pour préparer les étudiants à relever des défis du monde réel.