Introduit les réseaux de mémoire à long terme (LSTM) comme une solution pour la disparition et l'explosion des gradients dans les réseaux neuronaux récurrents.
Introduit des réseaux de flux, couvrant la structure du réseau neuronal, la formation, les fonctions d'activation et l'optimisation, avec des applications en prévision et finance.
Couvre les modèles de séquence à séquence, leur architecture, leurs applications et le rôle des mécanismes d'attention dans l'amélioration des performances.
Explore l'apprentissage profond pour la PNL, en couvrant les insertions de mots, les représentations contextuelles, les techniques d'apprentissage et les défis tels que les gradients de disparition et les considérations éthiques.
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.
Introduit des réseaux neuronaux, des fonctions d'activation et de rétropropagation pour la formation, en répondant aux défis et aux méthodes puissantes.
Explore les réseaux neuronaux récurrents pour les données comportementales, couvrant le repérage de connaissances profondes, les réseaux LSTM, GRU, le réglage hyperparamétrique et les tâches de prévision de séries chronologiques.