Couvre les réseaux neuronaux convolutifs, les architectures standard, les techniques de formation et les exemples contradictoires en apprentissage profond.
Couvre les bases de l'apprentissage profond, y compris les représentations de données, le sac de mots, le prétraitement des données, les réseaux de neurones artificiels et les réseaux de neurones convolutifs.
Introduit des fondamentaux d'apprentissage profond, couvrant les représentations de données, les réseaux neuronaux et les réseaux neuronaux convolutionnels.
Discute des défis liés à la construction de réseaux neuraux physiques, en mettant l'accent sur la profondeur, les connexions et la capacité de formation.
Couvre les approches modernes du réseau neuronal en matière de PNL, en mettant l'accent sur l'intégration de mots, les réseaux neuronaux pour les tâches de PNL et les futures techniques d'apprentissage par transfert.
Présente les réseaux neuronaux convolutifs, en expliquant leur architecture, leur processus de formation et leurs applications dans les tâches de segmentation sémantique.
Explore l'apprentissage en apprentissage profond pour les véhicules autonomes, couvrant les modèles prédictifs, RNN, ImageNet, et l'apprentissage de transfert.