Couvre la probabilité appliquée, les processus stochastiques, les chaînes de Markov, l'échantillonnage de rejet et les méthodes d'inférence bayésienne.
Couvre les modèles stochastiques de communication, se concentrant sur les variables aléatoires, les chaînes Markov, les processus Poisson et les calculs de probabilité.
Introduit des modèles de Markov cachés, expliquant les problèmes de base et les algorithmes comme Forward-Backward, Viterbi et Baum-Welch, en mettant laccent sur lattente-Maximisation.
Couvre les concepts fondamentaux en probabilité et en statistiques, en mettant l'accent sur les techniques d'analyse de données et la modélisation statistique.