Couvre la transformée de Fourier, ses propriétés, ses applications dans le traitement du signal et les équations différentielles, en mettant l'accent sur le concept de dérivées devenant des multiplications dans le domaine des fréquences.
Discute des transformations de Laplace et de Fourier, en se concentrant sur leurs formules d'inversion et leurs applications dans la résolution d'équations différentielles.
Discute de l'analyse complexe, en se concentrant sur le théorème des résidus et les transformées de Fourier, avec des exercices pratiques et des applications dans la résolution des équations différentielles.
Couvre la transformée de Fourier, ses propriétés et ses applications dans le traitement du signal et les équations différentielles, démontrant son importance dans l'analyse mathématique.