Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les techniques de réduction de dimensionnalité non linéaire à l'aide d'autoencodeurs, d'autoencodeurs profonds et d'autoencodeurs convolutifs pour diverses applications.
Introduit des notions fondamentales dans le filtrage numérique, couvrant les approches de filtrage 2D, les filtres linéaires, la stabilité, les filtres FIR et IIR, le filtrage de domaine de fréquence et les filtres gaussiens.
Explore les progrès et les défis dans les peaux électroniques neuromorphes, visant à permettre une utilisation intuitive des membres de remplacement et des robots autonomes.
Explore l'analyse et la classification de la texture dans les images, en mettant l'accent sur le rôle des techniques d'apprentissage automatique telles que les réseaux neuronaux convolutifs.
Explore la résonance magnétique nucléaire, les principes d'IRM, les séquences de pouls, la reconstruction d'images, les considérations de sûreté et la normalisation du volume dans l'imagerie cérébrale.