Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des structures de données réseau, des modèles et des techniques d'analyse, mettant l'accent sur l'invariance de permutation et les réseaux Erdős-Rényi.
Explore les techniques de décodage des signaux neuraux à l'aide d'interfaces invasives, d'électrodes régénératives et d'électrodes intraneurales pour améliorer le contrôle de la prothèse et réduire la douleur neuroma.
Introduit les bases de la connectomique cérébrale, y compris la terminologie, le prétraitement des données, l'IRM fonctionnelle, les mesures de connectivité et la structure modulaire.
Explore GLM, tests statistiques, signaux neuraux et traitement des signaux, couvrant les contrastes, les comparaisons multiples, les tests F, la connectivité fonctionnelle, l'IRMf à l'état de repos et les méthodes multivariées.
Couvre les fondamentaux des signaux neuraux et du traitement des signaux, en mettant l'accent sur la modélisation et la simulation des systèmes neuraux.
Couvre les propriétés stochastiques, les structures du réseau, les modèles, les statistiques, les mesures de centralité et les méthodes d'échantillonnage dans l'analyse des données du réseau.
Explore l'organisation topographique du cerveau, en mettant l'accent sur les représentations sensorielles et les techniques de neuroimagerie hémodynamique.