Couvre les techniques d'apprentissage supervisées et non supervisées dans l'apprentissage automatique, en mettant en évidence leurs applications dans la finance et l'analyse environnementale.
Explore la sélection des modèles dans la régression des moindres carrés, en abordant les défis de multicollinéarité et en introduisant des techniques de rétrécissement.
Explore des méthodes d'optimisation telles que la descente de gradient et les sous-gradients pour la formation de modèles d'apprentissage automatique, y compris des techniques avancées telles que l'optimisation d'Adam.
S'insère dans l'évaluation du modèle, couvrant la théorie, l'erreur de formation, l'erreur de prédiction, les méthodes de rééchantillonnage et les critères d'information.
Explore Ridge et Lasso Regression pour la régularisation dans les modèles d'apprentissage automatique, en mettant l'accent sur le réglage hyperparamétrique et la visualisation des coefficients des paramètres.