Discute de l'entropie, de la compression des données et des techniques de codage Huffman, en mettant l'accent sur leurs applications pour optimiser les longueurs de mots de code et comprendre l'entropie conditionnelle.
Introduit des variables aléatoires et leur signification dans la théorie de l'information, couvrant des concepts tels que la valeur attendue et l'entropie de Shannon.
Déplacez-vous dans les probabilités, les statistiques, les paradoxes et les variables aléatoires, montrant leurs applications et propriétés du monde réel.
Couvre les concepts fondamentaux de probabilité et de statistiques, y compris les résultats intéressants, le modèle standard, le traitement de l'image, les espaces de probabilité et les tests statistiques.