Couvre l'analyse en composantes principales pour la réduction dimensionnelle des données biologiques, en se concentrant sur la visualisation et l'identification des modèles.
Les étudiants en 'Numerics for Fluids, Structures and Electromagnétiques' doivent compléter les projets individuellement ou par paires, en suivant des règles spécifiques et des critères d'évaluation.
Couvre l'introduction et les défis des entrepôts de données, y compris l'intégration des données, la gestion des métadonnées et l'optimisation des performances des requêtes.
Présente une démo sur la virtualisation adaptative des données dans SmartDataLake, mettant l'accent sur l'assemblage de profils d'entreprise et l'exécution de requêtes de joint à travers les ensembles de données.
Souligne la reproductibilité et la réutilisabilité des données dans les neurosciences silico, en mettant l'accent sur les outils et les méthodes de neuroinformatique.
Explore l'évaluation environnementale systémique, l'analyse nationale des flux de matériaux et le développement d'un tableau de bord du métabolisme urbain pour Zurich à l'aide de données ouvertes.
Discute des techniques avancées d'optimisation Spark pour gérer efficacement les Big Data, en se concentrant sur la parallélisation, les opérations de mélange et la gestion de la mémoire.