Explore l'apprentissage de données interconnectées à l'aide de graphiques, couvrant les défis, la conception du GNN, les paysages de recherche et la démocratisation du graphique ML.
Explore l'analyse statistique des données du réseau, qui couvre les structures graphiques, les modèles, les statistiques et les méthodes d'échantillonnage.
Introduit le modèle relationnel, SQL, les clés, les contraintes d'intégrité, la traduction ER, les entités faibles, les hiérarchies ISA et SQL vs. noSQL.
Explore les aspects pratiques de la résolution des jeux de parité, y compris les stratégies gagnantes, les algorithmes, la complexité, le déterminisme et les approches heuristiques.
Couvre le langage SQL pour interagir avec les bases de données à travers des requêtes structurées, y compris la sélection, le filtrage, l'agrégation et le tri des données.
Couvre les bases du modèle relationnel dans les systèmes de gestion de bases de données, y compris les modèles de données, les clés primaires et étrangères.