Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore des sujets avancés dans l'apprentissage automatique, en se concentrant sur les extensions SVR et l'optimisation hyperparamétrique, y compris Nu-SVR et RVR.
Explore les méthodes d'optimisation, y compris la convexité, la descente en gradient et la minimisation non convexe, avec des exemples comme l'estimation de la probabilité maximale et la régression des crêtes.
Couvre la régression linéaire, lanalyse de corrélation et les fondamentaux de régression logistique, en mettant laccent sur la distinction entre la corrélation et la causalité.
Présente la régularisation Lasso et son application à l'ensemble de données MNIST, en mettant l'accent sur la sélection des fonctionnalités et les exercices pratiques sur la mise en œuvre de la descente en gradient.
Explore l'intersection de l'apprentissage automatique et de la vie privée, en discutant de la confidentialité, des attaques, de la vie privée différentielle et des compromis dans l'apprentissage fédéré.
Explore les techniques d'optimisation avancées pour les modèles d'apprentissage automatique, en se concentrant sur les méthodes de gradient adaptatifs et leurs applications dans les problèmes d'optimisation non convexe.