Modèles de langage: De la théorie à l'informatique
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les stratégies de formation pour les Transformateurs dans le PNL et Vision, en mettant l'accent sur les progrès rapides et les défis dans les modèles d'échelle.
Explore les propriétés théoriques et la puissance pratique des réseaux neuronaux récurrents, y compris leur relation avec les machines d'état et l'exhaustivité de Turing.
Explore les modèles de séquence à séquence avec BART et T5, en discutant de l'apprentissage du transfert, du réglage fin, des architectures de modèles, des tâches, de la comparaison des performances, des résultats de synthèse et des références.
Couvre l'impact des transformateurs dans la vision par ordinateur, en discutant de leur architecture, de leurs applications et de leurs progrès dans diverses tâches.
Explore la prédiction des réactions chimiques à l'aide de modèles générateurs et de transformateurs moléculaires, soulignant l'importance du traitement du langage moléculaire et de la stéréochimie.
Explore les modèles de résolution de coréférence, les défis dans les échelles de notation, les techniques de raffinement des graphiques, les résultats de pointe et l'impact des transformateurs préentraînés.
Explore l'application des transformateurs dans les tâches de vision, en se concentrant sur les ViT et les architectures de transformateurs innovantes pour les entrées et les sorties structurées.