Modèles de langage: De la théorie à l'informatique
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Discute des implications éthiques des systèmes NLP, en mettant l'accent sur les biais, la toxicité et les préoccupations en matière de protection de la vie privée dans les modèles linguistiques.
Explore les transformateurs en intelligence visuelle, en se concentrant sur la détection d'objets, la synthèse d'images et la fusion de fonctionnalités.
Explore les algorithmes d'apprentissage automatique distribués, les méthodes adaptatives pour les modèles d'attention, l'apprentissage collaboratif et les problèmes ouverts sur le terrain.
Explore les modèles de transformateurs moléculaires, la cartographie des atomes, la planification de la synthèse de l'IA et le rôle transformateur des transformateurs dans la chimie.
Explore l'évaluation des modèles de génération de langage naturel, en soulignant l'importance des jugements humains et les limites des paramètres de contenu se chevauchent.
Fournit un aperçu du traitement du langage naturel, en se concentrant sur les transformateurs, la tokenisation et les mécanismes d'auto-attention pour une analyse et une synthèse efficaces du langage.