Couvre les architectures de transformateurs avancées en apprentissage profond, en se concentrant sur les modèles Swin, HUBERT et Flamingo pour les applications multimodales.
Couvre les faits stylisés du rendement des actifs, des statistiques sommaires, des tests de la normalité, des placettes Q-Q et des hypothèses de marché efficaces.
Couvre les concepts d'apprentissage profond, en se concentrant sur les graphiques, les transformateurs et leurs applications dans le traitement des données multimodales.
Explore l'impact de l'apprentissage profond sur les humanités numériques, en se concentrant sur les systèmes de connaissances non conceptuels et les progrès récents de l'IA.