Couvre la fabrication axée sur les données en mettant l'accent sur la fabrication additive, y compris l'analyse de la fabrication et une approche d'apprentissage automatique.
Offre une introduction pratique à la modélisation à l'échelle atomique à travers des carnets Jupyter, en mettant l'accent sur les concepts fondamentaux de la science des matériaux.
Couvre les algorithmes pour résoudre des problèmes mathématiques à l'aide d'un ordinateur, y compris les équations non linéaires et les méthodes d'approximation numérique.
Discute de l'application des méthodes de Monte Carlo dans l'analyse du rayonnement thermique, en se concentrant sur les fonctions de probabilité et les techniques d'intégration numérique.
Couvre les méthodes de recherche de racines, en se concentrant sur les techniques de bisection et de sécante, leurs implémentations et les comparaisons de leurs taux de convergence.
Explore des méthodes numériques stochastiques efficaces pour la modélisation et l'apprentissage, couvrant des sujets comme le moteur d'analyse et les inhibiteurs de la kinase.
Discute de la simulation de la dynamique quantique à plusieurs corps à l'aide de réseaux de neurones artificiels pour surmonter les défis informatiques et stabiliser les solutions.