Couvre les techniques de réduction de dimensionnalité telles que PCA et LDA, les méthodes de clustering, l'estimation de la densité et la représentation des données.
Couvre les techniques d'apprentissage supervisées et non supervisées dans l'apprentissage automatique, en mettant en évidence leurs applications dans la finance et l'analyse environnementale.
Explique le regroupement des moyennes k, en attribuant des points de données à des grappes en fonction de la proximité et en minimisant les distances carrées à l'intérieur des grappes.
Introduit l'apprentissage non supervisé en cluster avec les moyennes K et la réduction de dimensionnalité à l'aide de PCA, ainsi que des exemples pratiques.
Explore les méthodes de clustering K-means et DBSCAN, en discutant des propriétés, des inconvénients, de l'initialisation et de la sélection optimale des clusters.