Couvre la pensée algorithmique, la programmation Python, les méthodes numériques et les concepts informatiques essentiels pour l'informatique scientifique.
Explore les méthodes de calcul en physique quantique, en mettant l'accent sur la diagonalisation exacte et les techniques de discrétisation de l'espace.
Couvre les bases de la simulation numérique de flux, en soulignant l'importance de comprendre la méthodologie et de pratiquer des techniques de simulation pour exécuter des simulations complètes de manière autonome.
Explore des méthodes numériques stochastiques efficaces pour la modélisation et l'apprentissage, couvrant des sujets comme le moteur d'analyse et les inhibiteurs de la kinase.
Couvre la théorie et les applications pratiques des simulations de pliage de protéines en utilisant la dynamique moléculaire, en se concentrant sur les effets des solvants et l'analyse de la dynamique de pliage.
Couvre les méthodes de calcul se concentrant sur les chemins et les chaînes de caractères, y compris des exemples de concaténation, d'éléments régex et d'opérations de chaînes de caractères.