Couvre les paradigmes algorithmiques pour les problèmes de graphique dynamique, y compris la connectivité dynamique, la décomposition de l'expansion et le regroupement local, brisant les barrières dans les problèmes de connectivité k-vertex.
Explore la gestion des données du réseau, y compris les types de graphiques, les propriétés du réseau dans le monde réel et la mesure de l'importance des nœuds.
Déplacez-vous dans la centralité et les centres de neurosciences en réseau, explorant l'importance des noeuds, les réseaux de petits mondes, le connectome structural du cerveau et la théorie de la percolation.
Explore la centralité, les hubs, les vecteurs propres, les coefficients de regroupement, les réseaux de petits mondes, les défaillances des réseaux et la théorie de la percolation dans les réseaux du cerveau.
Introduit des bases d'apprentissage automatique, couvrant la segmentation des données, le regroupement, la classification, et des applications pratiques comme la classification d'image et la similarité du visage.
Explore les concepts avancés de coloration graphique, y compris la coloration plantée, le seuil de rigidité, et les variables gelées en points fixes BP.