Décomposition QREn algèbre linéaire, la décomposition QR (appelée aussi, factorisation QR ou décomposition QU) d'une matrice A est une décomposition de la forme où Q est une matrice orthogonale (QQ=I), et R une matrice triangulaire supérieure. Ce type de décomposition est souvent utilisé pour le calcul de solutions de systèmes linéaires non carrés, notamment pour déterminer la pseudo-inverse d'une matrice. En effet, les systèmes linéaires AX = Y peuvent alors s'écrire : QRX = Y ou RX = QY.
Décomposition LUEn algèbre linéaire, la décomposition LU est une méthode de décomposition d'une matrice comme produit d'une matrice triangulaire inférieure (comme lower, inférieure en anglais) par une matrice triangulaire supérieure (comme upper, supérieure). Cette décomposition est utilisée en analyse numérique pour résoudre des systèmes d'équations linéaires. Soit une matrice carrée. On dit que admet une décomposition LU s'il existe une matrice triangulaire inférieure formée de 1 sur la diagonale, notée , et une matrice triangulaire supérieure, notée , qui vérifient l'égalité Il n'est pas toujours vrai qu'une matrice admette une décomposition LU.
Décomposition polaireLa décomposition polaire est un outil mathématique fondamental pour comprendre les propriétés topologiques des groupes linéaires réels et complexes. Les applications suivantes sont des homéomorphismes, et même des difféomorphismes. En particulier, toute matrice inversible réelle se décompose de façon unique en produit d'une matrice orthogonale et d'une matrice symétrique définie positive. Les applications suivantes sont surjectives mais non injectives : En particulier, toute matrice réelle se décompose en produit d'une matrice orthogonale et d'une unique matrice symétrique positive (mais pas nécessairement de façon unique).
Intégrale curviligneEn géométrie différentielle, l'intégrale curviligne est une intégrale où la fonction à intégrer est évaluée sur une courbe Γ. Il y a deux types d'intégrales curvilignes, selon que la fonction est à valeurs réelles ou à valeurs dans les formes linéaires. Le second type (qui peut se reformuler en termes de circulation d'un champ de vecteurs) a comme cas particulier les intégrales que l'on considère en analyse complexe. Dans cet article, Γ est un arc orienté dans R, rectifiable c'est-à-dire paramétré par une fonction continue à variation bornée t ↦ γ(t), avec t ∈ [a, b].
Démonstration (logique et mathématiques)vignette| : un des plus vieux fragments des Éléments d'Euclide qui montre une démonstration mathématique. En mathématiques et en logique, une démonstration est un ensemble structuré d'étapes correctes de raisonnement. Dans une démonstration, chaque étape est soit un axiome (un fait acquis), soit l'application d'une règle qui permet d'affirmer qu'une proposition, la conclusion, est une conséquence logique d'une ou plusieurs autres propositions, les prémisses de la règle.