Couvre les concepts de limites et de colimits dans la catégorie des espaces topologiques, en mettant l'accent sur la relation entre la colimit et les constructions limites et les adjonctions.
Couvre les bases de la topologie, en mettant l'accent sur la cohomologie et les espaces de quotient, en mettant l'accent sur leurs définitions et leurs propriétés à travers des exemples et des exercices.
Couvre des courbes modulaires comme des surfaces compactes de Riemann, expliquant leur topologie, la construction de graphiques holomorphes et leurs propriétés.
Discute de l'homotopie et des attaches coniques en topologie, en soulignant leur importance dans la compréhension des composants connectés et des groupes fondamentaux.