Par Meenakshi Khosla explore la modélisation basée sur les données dans les neurosciences naturalistes à grande échelle, en mettant l'accent sur la représentation de l'activité cérébrale et les modèles de calcul.
Explore le bruit d'échappement dans la neuroscience computationnelle, couvrant l'intensité stochastique, les intervalles d'intercirculation, les fonctions de vraisemblance, la comparaison des modèles de bruit, et les codes de vitesse par rapport aux codes temporels.
Explore la compréhension biophysique du comportement électrique neuronal, y compris les défis dans la modélisation des neurones, la génération de potentiels d'action, et l'impact de la structure dendritique sur les schémas de tir.
Explore la compréhension biophysique du comportement neuronal, en se concentrant sur les potentiels d'action, les défis de modélisation neuronale et l'inhibition dendritique.
Explore l'optimisation des systèmes neuroprothétiques, y compris la restauration de rétroaction sensorielle et les stratégies de stimulation neuronale.
Explore les buts et les défis de la neuroscience computationnelle, en mettant l'accent sur la dynamique neuronale de la cognition et les arguments de terrain moyen.