Introduction à la Programmation Orientée Objet (en C++) [retired]
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Deep learning has revolutionized the field of computer vision, a success largely attributable to the growing size of models, datasets, and computational power.Simultaneously, a critical pain point arises as several computer vision applications are deployed ...
Photometric stereo, a computer vision technique for estimating the 3D shape of objects through images captured under varying illumination conditions, has been a topic of research for nearly four decades. In its general formulation, photometric stereo is an ...
Recent advancements in deep learning have revolutionized 3D computer vision, enabling the extraction of intricate 3D information from 2D images and video sequences. This thesis explores the application of deep learning in three crucial challenges of 3D com ...
This report presents a study on the development and application of a Region-based Convolutional Neural Network, Faster RCNN and a more complex one, TransVOD, to locate solar coronal jets using data from the Solar Dynamic Observatory (SDO). The study focus ...
Object detection plays a critical role in various computer vision applications, encompassingdomains like autonomous vehicles, object tracking, and scene understanding. These applica-tions rely on detectors that generate bounding boxes around known object c ...
Dense image-based prediction methods have advanced tremendously in recent years. Their remarkable development has been possible due to the ample availability of real-world imagery. While these methods work well on photographs, their abilities do not genera ...
Turning pass-through network architectures into iterative ones, which use their own output as input, is a well-known approach for boosting performance. In this paper, we argue that such architectures offer an additional benefit: The convergence rate of the ...
Artificial intelligence, particularly the subfield of machine learning, has seen a paradigm shift towards data-driven models that learn from and adapt to data. This has resulted in unprecedented advancements in various domains such as natural language proc ...
Bowers et al. argue that deep neural networks (DNNs) are poor models of biological vision because they often learn to rival human accuracy by relying on strategies that differ markedly from those of humans. We show that this problem is worsening as DNNs ar ...
This paper introduces TACOSS a text-image alignment approach that allows explainable land cover semantic segmentation by directly integrating semantic concepts encoded from texts. TACOSS combines convolutional neural networks for visual feature extraction ...
The Institute of Electrical and Electronics Engineers, Inc2023