Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We introduce and analyze an efficient numerical homogenization method for a class of nonlinear parabolic problems of monotone type in highly oscillatory media. The new scheme avoids costly Newton iterations and is linear at both the macroscopic and the mic ...
In this paper we review various numerical homogenization methods for monotone parabolic problems with multiple scales. The spatial discretisation is based on finite element methods and the multiscale strategy relies on the heterogeneous multiscale method. ...
We present a new conservative multiscale method for Stokes flow in heterogeneous porous media. The method couples a discontinuous Galerkin finite element method(DG-FEM) at the macroscopic scale for the solution of an effective Darcy equation with a Stokes ...
We introduce a numerical homogenization method based on a discontinuous Galerkin finite element heterogeneous multiscale method (DG-HMM) to efficiently approximate the effective solution of parabolic advection-diffusion problems with rapidly varying coeffi ...
A new characterization of sufficient conditions for the Lie-Trotter splitting to cap- ture the numerical invariant measure of nonlinear ergodic Langevin dynamics up to an arbitrary order is discussed. Our characterization relies on backward error analysis ...
In this work we combine the framework of the Reduced Basis method (RB) with the framework of the Localized Orthogonal Decomposition (LOD) in order to solve parametrized elliptic multiscale problems. The idea of the LOD is to split a high dimensional Finite ...
Numerical methods for partial differential equations with multiple scales that combine numerical homogenization methods with reduced order modeling techniques are discussed. These numerical methods can be applied to a variety of problems including multisca ...
Finite elements methods (FEMs) with numerical integration play a central role in numerical homogenization methods for partial differential equations with multiple scales, as the effective data in a homogenization problem can only be recovered from a micros ...
A new multiscale coupling method is proposed for elliptic problems with highly oscillatory coefficients with a continuum of scales in a subset of the computational domain and scale separation in complementary regions of the computational domain. A disconti ...
An optimization based algorithm is proposed for solving elliptic problems with highly oscillatory coecients that do not exhibit scale separation in a subregion of the physical domain. The given method, written as a constrained minimization problem couples ...