Personne

Babak Rahmani

Cette personne n’est plus à l’EPFL

Publications associées (14)

Backpropagation-free training of deep physical neural networks

Romain Christophe Rémy Fleury, Ali Momeni, Matthieu Francis Malléjac, Babak Rahmani, Marc Philipp Del Hougne

Recent successes in deep learning for vision and natural language processing are attributed to larger models but come with energy consumption and scalability issues. Current training of digital deep-learning models primarily relies on backpropagation that ...
2023

Learning of physical systems: from inference to control

Babak Rahmani

To characterize a physical system to behave as desired, either its underlying governing rulesmust be known a priori or the system itself be accurately measured. The complexity of fullmeasurements of the system scales with its size. When exposed to real-wor ...
EPFL2022

Deep Learning-Based Image Classification through a Multimode Fiber in the Presence of Wavelength Drift

Demetri Psaltis, Christophe Moser, Navid Borhani, Eirini Kakkava, Babak Rahmani, Ugur Tegin

Deep neural networks (DNNs) are employed to recover information after its propagation through a multimode fiber (MMF) in the presence of wavelength drift. The intensity distribution of the speckle patterns generated at the output of an MMF when an input wa ...
2020

Controlling spatiotemporal nonlinearities in multimode fibers with deep neural networks

Demetri Psaltis, Navid Borhani, Eirini Kakkava, Babak Rahmani, Ugur Tegin

Spatiotemporal nonlinear interactions in multimode fibers are of interest for beam shaping and frequency conversion by exploiting the nonlinear interaction of different pump modes from quasi-continuous wave to ultrashort pulses centered around visible to i ...
2020

Terahertz Quarter Wave-Plate Metasurface Polarizer Based on Arrays of Graphene Ribbons

Babak Rahmani

We propose a novel graphene-dielectric-based meta-surface for manipulating the polarization of the incident light in the terahertz regime. The proposed structure comprised two orthogonally oriented periodic array of graphene ribbons (PAGRs) which are separ ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2019

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.