Programmation concurrenteLa programmation concurrente est un paradigme de programmation tenant compte, dans un programme, de l'existence de plusieurs piles sémantiques qui peuvent être appelées threads, processus ou tâches. Elles sont matérialisées en machine par une pile d'exécution et un ensemble de données privées. La concurrence est indispensable lorsque l'on souhaite écrire des programmes interagissant avec le monde réel (qui est concurrent) ou tirant parti de multiples unités centrales (couplées, comme dans un système multiprocesseurs, ou distribuées, éventuellement en grille ou en grappe).
Concurrency (computer science)In computer science, concurrency is the ability of different parts or units of a program, algorithm, or problem to be executed out-of-order or in partial order, without affecting the outcome. This allows for parallel execution of the concurrent units, which can significantly improve overall speed of the execution in multi-processor and multi-core systems. In more technical terms, concurrency refers to the decomposability of a program, algorithm, or problem into order-independent or partially-ordered components or units of computation.
Concurrency controlIn information technology and computer science, especially in the fields of computer programming, operating systems, multiprocessors, and databases, concurrency control ensures that correct results for concurrent operations are generated, while getting those results as quickly as possible. Computer systems, both software and hardware, consist of modules, or components. Each component is designed to operate correctly, i.e., to obey or to meet certain consistency rules.
Parallélisme (informatique)vignette|upright=1|Un des éléments de Blue Gene L cabinet, un des supercalculateurs massivement parallèles les plus rapides des années 2000. En informatique, le parallélisme consiste à mettre en œuvre des architectures d'électronique numérique permettant de traiter des informations de manière simultanée, ainsi que les algorithmes spécialisés pour celles-ci. Ces techniques ont pour but de réaliser le plus grand nombre d'opérations en un temps le plus petit possible.
Multiversion Concurrency ControlMultiversion concurrency control (abrégé en MCC ou MVCC) est une méthode informatique de contrôle des accès concurrents fréquemment utilisée dans les systèmes de gestion de base de données et les langages de programmation concernant la gestion des caches en mémoire. Le principe de MVCC repose sur un verrouillage dit optimiste contrairement au verrouillage pessimiste qui consiste à bloquer préalablement les objets à des garanties de bonne fin. L'inconvénient logique est qu'une mise à jour peut être annulée du fait d'un "blocage" en fin de traitement.
Microprocesseur multi-cœurvignette|Un processeur quad-core AMD Opteron. vignette|L’Intel Core 2 Duo E6300 est un processeur double cœur. Un microprocesseur multi-cœur (multi-core en anglais) est un microprocesseur possédant plusieurs cœurs physiques fonctionnant simultanément. Il se distingue d'architectures plus anciennes (360/91) où un processeur unique commandait plusieurs circuits de calcul simultanés. Un cœur (en anglais, core) est un ensemble de circuits capables d’exécuter des programmes de façon autonome.
Optimistic concurrency controlOptimistic concurrency control (OCC), also known as optimistic locking, is a concurrency control method applied to transactional systems such as relational database management systems and software transactional memory. OCC assumes that multiple transactions can frequently complete without interfering with each other. While running, transactions use data resources without acquiring locks on those resources. Before committing, each transaction verifies that no other transaction has modified the data it has read.
Central processing unitA central processing unit (CPU)—also called a central processor or main processor—is the most important processor in a given computer. Its electronic circuitry executes instructions of a computer program, such as arithmetic, logic, controlling, and input/output (I/O) operations. This role contrasts with that of external components, such as main memory and I/O circuitry, and specialized coprocessors such as graphics processing units (GPUs). The form, design, and implementation of CPUs have changed over time, but their fundamental operation remains almost unchanged.
Transactional memoryIn computer science and engineering, transactional memory attempts to simplify concurrent programming by allowing a group of load and store instructions to execute in an atomic way. It is a concurrency control mechanism analogous to database transactions for controlling access to shared memory in concurrent computing. Transactional memory systems provide high-level abstraction as an alternative to low-level thread synchronization. This abstraction allows for coordination between concurrent reads and writes of shared data in parallel systems.
Processeur superscalaireUn processeur est dit superscalaire s'il est capable d'exécuter plusieurs instructions simultanément parmi une suite d'instructions. Pour cela, il comporte plusieurs unités de calcul, et est capable de détecter l'absence de dépendances entre instructions. Un processeur superscalaire cherche à exploiter le parallélisme entre instructions pour accélérer l'exécution des programmes. Cette approche évite de modifier les programmes pour exploiter le parallélisme : le processeur détecte lui-même les instructions pouvant être exécutées en parallèle, contrairement à d'autres approches, comme le VLIW.