Publication

Multiscale modelling of metabolism and transport phenomena in living tissues

Carlo D'Angelo
2007
Thèse EPFL
Résumé

The range of applications of mathematical modelling in biosciences has recently expanded to encompass problems posed by biomedicine and sport sciences. Topics of interest are for instance the prediction of the response of an athlete to exercise, the pharmacokinetics of a chemical compound, or the detection of illicit drugs. In this work, we consider some of these problems, related to metabolism, circulation and mass transport in tissues. First, we address the quantitative analysis of the biochemical reactions that are responsible of energy production in muscle cells. These reactions are strictly dependent on chemical exchanges between blood and tissues, by several physiological auto-regulation mechanisms. For this reason, we consider coupled problems in which the reaction phenomena are influenced by transport in blood. In particular, the problem of local blood perfusion and supply of substrates to tissues is studied in detail. The processes underlying the interaction between metabolism and circulation feature a multiscale nature: for instance, although metabolism takes place in cells, it modifies the hemodynamics of peripheral (capillaries) and central (heart) circulation. Therefore, we will set up a hierarchy of models, corresponding to these different scales. At first, we adopt an integrative approach, based on a compartmental model of the whole-body response to exercise, or more generally to variations in skeletal muscle metabolism. This model is the higher level of the hierarchy, describing the interactions between organs. Then, we increase the level of detail and focus on isolated tissues and vessels, considering more accurate one-dimensional models for blood flow and mass transport, as well as coupled 1D-3D models of tissue perfusion. In the latter models, the microvascular matrix is represented as a three-dimensional homogeneous medium, where larger vessels are described as 1D networks: circulation, transport and reaction of biochemical species are modelled at both the scales. The models considered in this work may provide a multi-scale analysis of metabolic processes, such as those induced by exercise, that often begin at cellular level, progressively propagate up through the hierarchy of scales, until adaptation of the whole body is reached. Examples of simulations, dealing with exercise protocols or clinical study cases, are provided to support the range of applications.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (35)
Métabolisme des médicaments
Drug metabolism is the metabolic breakdown of drugs by living organisms, usually through specialized enzymatic systems. More generally, xenobiotic metabolism (from the Greek xenos "stranger" and biotic "related to living beings") is the set of metabolic pathways that modify the chemical structure of xenobiotics, which are compounds foreign to an organism's normal biochemistry, such as any drug or poison. These pathways are a form of biotransformation present in all major groups of organisms and are considered to be of ancient origin.
Métabolisme
Le métabolisme est l'ensemble des réactions chimiques qui se déroulent à l'intérieur de chaque cellule d'un être vivant et lui permettent notamment de se maintenir en vie, de se reproduire (se diviser), de se développer et de répondre aux stimuli de son environnement (échanges par exemple). Certaines de ces réactions chimiques se déroulent en dehors des cellules de l'organisme, comme la digestion ou le transport de substances entre cellules. Cependant, la plupart de ces réactions ont lieu dans les cellules elles-mêmes et constituent le métabolisme intermédiaire.
Phénomène de transfert
Un phénomène de transfert (ou phénomène de transport) est un phénomène irréversible durant lequel une grandeur physique est transportée par le biais de molécules. C'est un phénomène transversal présent dans tous les domaines de la science et en ingénierie. Tous les phénomènes de transport ont pour origine l'inhomogénéité d'une grandeur intensive. C'est la tendance spontanée des systèmes physiques et chimiques à rendre uniformes ces grandeurs qui provoquent le transport.
Afficher plus
Publications associées (90)

Hemoglobin-stabilized gold nanoclusters displaying oxygen transport ability, self-antioxidation, auto-fluorescence properties and long-term storage potential

The development of hemoglobin (Hb)-based oxygen carriers (HBOCs) holds a lot of potential to overcome important drawbacks of donor blood such as a short shelf life or the potential risk of infection. However, a crucial limitation of current HBOCs is the au ...
ROYAL SOC CHEMISTRY2023

Trans-anethole Induces Thermogenesis via Activating SERCA/SLN Axis in C2C12 Muscle Cells

Sulagna Mukherjee

Recently, adaptive non-shivering thermogenesis has attracted considerable attention because it can elevate energy expenditure and help treat obesity. Despite the numerous reports related to UCP1-driven thermogenesis, little is known regarding UCP1-independ ...
KOREAN SOC BIOTECHNOLOGY & BIOENGINEERING2022

Altered heart cytokine profile and action potential modulation in cardiomyocytes from Mas-deficient mice

The renin-angiotensin system (RAS) is a key hormonal system. In recent years, the functional analysis of the novel axis of the RAS (ACE2/Ang-(1-7)/Mas receptor) revealed that its activation can become pro-tective against several pathologies, including card ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2022
Afficher plus
MOOCs associés (10)
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.